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Abstract— The heterogeneity in the current and future multi-
media environment requires an elegant adaptation framework for
the production and consumption of different kinds of multimedia
content. Such an architecture is preferably based on the usage of
scalable bitstreams and a format-agnostic content adaptation en-
gine. To obtain fully embedded scalable bitstreams, the Joint Scal-
able Video Model (JSVM) has been used in this paper. Hereby,
JSVM defines a scalable extension on top of the H.264/AVC
specification. This extension will make it possible to create
bitstreams that are scalable along the temporal, spatial, and SNR
axis. On the other hand, bitstream structure descriptions can
be used to realize an elegant and format-agnostic adaptation
engine. Such descriptions can be created by making use of
the MPEG-21 Bitstream Syntax Description Language (BSDL)
standard. The latter allows to describe the high-level structure
of scalable bitstreams in XML. This paper explains how fully
scalable bitstreams can be customized by transforming BSDL-
based bitstream structure descriptions. From our performance
analysis, one can conclude that the transformation of the XML
description, as well as the generation of the adapted bitstream,
can be done several times faster than real time.

I. INTRODUCTION

Nowadays, our pervasive multimedia ecosystem allows that
multimedia content can be accessed by different users from
a various collection of terminals and networks. For instance,
thanks to the growing processing power, Personal Digital As-
sistants (PDAs) and cellular phones are already able to decode
high quality video sequences. In such a diverse environment,
it is necessary to control the huge miscellany of content and
resource constraints such as terminal capabilities, band width,
CPU power, etcetera. Therefore, two important technologies
are indispensable to obtain such a multimedia environment,
in particular scalable bitstreams and a standardized format-
agnostic content adaptation framework. These two technolo-
gies belong to different research topics: scalable bitstreams
are a part of media coding techniques while the functioning
of an adaptation framework rather belongs to the metadata
community. This paper describes how these two different
worlds can be brought together in order to shift the focus of the
content customization process to the high-level XML domain,
hereby taking into account the different usage environment
parameters (e.g., the CPU power of a terminal). Because of the
fact that motion pictures are playing an increasingly important
role in our multimedia environments, the focus of this paper

will be put on video sequences as multimedia resources.
To obtain fully embedded scalable bitstreams, the Joint Scal-
able Video Model (JSVM) specification is used. JSVM is
based on the successful H.264/AVC standard and it describes
an extension mechanism such that scalable bitstreams can be
obtained. This is in contrast with the original H.264/AVC spec-
ification that is not designed to produce scalable bitstreams. On
the other hand, the MPEG-21 Bitstream Syntax Description
Language (BSDL) is used to describe the structure of a
bitstream in XML such that the adaptations can be expressed
in the XML domain instead of in the low-level compressed
domain. This paper describes how XML descriptions can be
generated for JSVM encoded bitstreams and how the embed-
ded scalability can be exploited in this high-level domain.
The outline of the paper is as follows. In Section II, the
global structure of JSVM will be described as well as how
the different embedded scalability axes can be found in the
generated bitstreams. Section III discusses the construction of
a BS Schema for a JSVM encoded bitstream. The implementa-
tion of the different stylesheets to obtain descriptions of partial
streams with a decreasing quality along one or more scalability
axes is described in Section IV. A performance analysis of
the format-agnostic framework used is provided in Section V.
Finally, a conclusion is given in Section VI.

II. JOINT SCALABLE VIDEO MODEL

The Joint Video Team (JVT) has started the standardization
of a new scalable video specification in 2004 [1]. Scalable
video coding schemes are able to encode the input sequence
once at the highest resolution, frame rate, and visual quality,
after which it is possible to extract partial streams containing
a lower quality. The bitstream extractor has to generate the
partial streams in an efficient way, which means that no
decode-encode steps of the chroma and luma data of the
original bitstream are needed. Every scalability axis has to be
independently accessible. The three scalability axes are tem-
poral, spatial, and SNR (Signal-to-Noise Ratio). A reduction
of the quality along the temporal axis results in a decreasing
frame rate; along the spatial axis in a smaller spatial resolution;
and along the SNR axis in a lower visual quality.
The new standard under development, in particular JSVM, is
an extension of the single-layered H.264/MPEG-4 Advanced
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Video Coding scheme (H.264/AVC). This results in the re-
quirement that the base layer of the scalable bitstream should
be H.264/AVC compliant [2]. The structure of a possible
encoder, providing three spatial levels, is given in Fig. 1. In
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Fig. 1. JSVM encoder structure for providing three spatial levels, [5].

this figure, one can see that the original input video sequence
has to be downscaled in order to obtain the different spatial
layers (resulting in spatial scalability). For each spatial layer
a temporal decomposition is performed leading to temporal
scalability. The temporal scalability can be achieved in two
ways, in particular by using hierarchical B pictures or by
using Motion Compensated Temporal Filtering (MCTF). Both
temporal decompositions lead to a motion field and texture
data. The layered structure of the JSVM contains the pos-
sibility to use motion information and texture encoding of
lower spatial layers for predicting the information in the higher
layers. Finally, the texture information is spatially transformed
and entropy encoded by using Fine or Coarse Grain Scalability
(FGS and CGS) to obtain the SNR scalability axis.
The structure of a bitstream generated by a coding scheme
as given in Fig. 1 is depicted in Fig. 2. Every scalable
bitstream starts with a Supplemental Enhancement Information
(SEI) message. Such a message contains information about
the scalability axes incorporated in the bitstream such as the
number of spatial levels, the temporal decomposition, the
spatial resolution of the base layer, the frame rate, etc. An
SEI message can be ignored by a decoder to reproduce the
luma and chroma samples and is only necessary to assist
the extractor in generating partial bitstreams [8]. These SEI
messages are very important to satisfy the requirement to
support efficient bitstream extraction. After the SEI message, a
number of Sequence Parameter Sets (SPS) follow; in particular
at least one SPS is needed for every spatial layer. An SPS is
applicable to a complete sequence of pictures of a particular
spatial layer and contains information about the profile used,
the spatial resolution of the pictures in the sequence, etc. A
number of Picture Parameter Sets (PPS) are also encapsulated
in the bitstream. A PPS applies to a number of pictures of
a sequence and contains information such as the type of the

entropy encoding used, the presence of a deblocking filter, etc.
Because of the fact that every PPS must refer to an SPS, there
are at least as many PPSs as SPSs and mostly there are more
PPSs than SPSs. Finally, the NALUs (Network Abstraction
Layer Units), containing the luma and chroma information,
are integrated into the bitstream. Every unit starts with a
header followed by the actual payload, which is nothing more
than a concatenation of entropy encoded MacroBlocks (MBs).
The NALU header contains the type of the unit. When the
slice data of the unit belongs to an extension layer, scalability
information can be present in the header as well.

SEI SPS SPS… PPS … PPS Other NALUs …

NALU Header Raw Byte Sequence Payload

Nal_ref_idc Nal_unit_type Scalability_Info Slice_header Slice_data

MB MB MB…Temporal_level Quality_levelDependency_id

Fig. 2. Structure of a scalable bitstream.

III. MPEG-21 BSDL FOR JSVM BITSTREAMS

BSDL is embedded in part 7 of the MPEG-21 specification;
this part is better known as Digital Item Adaptation (DIA).
MPEG-21 describes a multimedia framework which aims
to enable the transparent and augmented use of multimedia
resources across a wide range of networks and devices [6].
The DIA standard specifies tools that describe terminal char-
acteristics, network capabilities, and user preferences. The
specification also contains two tools for describing the high-
level structure of an encoded bitstream, in particular BSDL
and generic Bitstream Syntax Schema (gBS Schema). In this
paper, we use MPEG-21 BSDL as a language for describing
the high-level structure of compressed bitstreams.
MPEG-21 BSDL is based on W3C XML Schema and is
developed to automatically generate Bitstream Syntax De-
scriptions (BSDs). A BSD describes the high-level structure
of a bitstream in XML. This XML-based description can
then be transformed in order to reflect a desired adaptation
of a scalable bitstream, and can subsequently be used to
create a customized version of the bitstream. The general
functioning of the BSDL architecture is given in Fig. 3.
Dependent on the coding specification used, a BS Schema can
be developed such that it describes the high-level structure of
a compressed bitstream. In Fig. 3, one can see that a BSD
can be generated by a format-independent parser once the
original (encoded) bitstream and corresponding BS Schema is
known. The functioning of the BintoBSD Parser is described
in the standard because of the fact that a BS Schema can
only contain elements that are fixed by BSDL. Once an XML-
based BSD is generated, the description can be transformed by
using a ubiquitous transformation technology such as XSLT
(Extensible Stylesheet Language: Transformations) [3] or STX
(Streaming Transformations for XML) [4]. The result of the
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transformation is an adapted XML description that is still valid
against the BS Schema of the coding scheme used. From this
description, it is possible to generate an adapted bitstream by
using the transformed BSD; the original bitstream; and the
corresponding BS Schema. The generic BSDtoBin Parser can
be used to realize this process and the functioning of this tool
is also described in the MPEG-21 DIA specification. This tool
is a format-agnostic bitsteam generation tool, i.e. the code base
of this parser does not have to be rewritten in order to support
the customization of another coding format.

Bitstream

(Hexadecimal representation)

05 E7  C3  D2  02 12

Frame 1 Frame 2 Frame 3

XML description:

<Bitstream>

<Frame>0  2</Frame>

<Frame>2  2</Frame>

<Frame>4  2</Frame>

</Bitstream>

Startbyte
Length

BintoBSD

Adapted description:

<Bitstream>

<Frame>0  2</Frame>

<Frame>4  2</Frame>

</Bitstream>

Transformation
e.g.: elimination of the 

2nd frame

BSDtoBin

Adapted Bitstream 

(Hexadecimal representation)

05 E7  02 12

Frame 1 Frame 3

BS

Schema

Fig. 3. Functioning of the BSDL framework.

In this paper, we use bitstreams that are compliant with the
third version of JSVM [5]. The structure of those bitstreams
is explained in Section II. The following syntactical datastruc-
tures are described in XML: SEI, SPS, PPS, and the NALU
header. One can see that we do not describe the encoded
residual data but only the necessary header information. The
actual payload can be obtained by pointing to blocks of data
in the original bitstream (resulting in a high-level description).
Therefore, one has to use the byteRange datatype that
is part of the BSDL specification and that is not present
in the W3C XML Schema standard. Other datatypes that
were added to BSDL are fillByte and bit-based datatypes.
Moreover, BSDL offers the possibility to design new datatypes
by deriving them from the W3C XML Schema datatypes or
from the BSDL built-in datatypes. Nevertheless, some syntax
elements are having a datatype that cannot be described by
BSDL such as the exponential Golomb datatype. To parse a
syntax element that is represented by this datatype, we have
used a non-normative extension of the BSDL standard, in
particular the implementation attribute in the BS Schema.
This attribute allows to rely on procedural objects in order
to perform complex computations or to deal with complex
datatypes by calling Java classes from the BS Schema [6].

IV. EXPLOITING THE SCALABILITY IN XML

An adaptation of the original scalable bitstream along the
three scalability axes has to be realized by transforming the
generated BSD. We have implemented the XML transfor-
mations by using XSLT. In Fig. 4, a part of a generated
BSD is represented. An example of the four most important
parts of the BSD is given, in particular the SEI message, an

<byte_stream_nal_unit>

<nal_unit>

<sei_message>

<scalability_info_model2>

<max_mb_number_in_row>44</max_mb_number_in_row>

<max_mb_number_in_column>36</max_mb_number_in_column>

<frame_rate_unit_nominator>14</frame_rate_unit_nominator>

<frame_rate_unit_denominator>3</frame_rate_unit_denominator>

<max_decomposition_stages>3</max_decomposition_stages>

<num_spatial_layers>1</num_spatial_layers>

<avc_base_layer_flag>1</avc_base_layer_flag>

<base_layer_decomposition_stages>1</base_layer_decomposition_stages>

<non_dyadic_spatial_scalability_flag>1</non_dyadic_spatial_scalability_flag>

<spatial_layer>

<if_non_dyadic_spatial_scalability_flag>

<frame_width_in_mbs_minus_1>21</frame_width_in_mbs_minus_1>

<frame_height_in_mbs_minus_1>17</frame_height_in_mbs_minus_1>

</if_non_dyadic_spatial_scalability_flag>

<temporal_resolution_factor>1</temporal_resolution_factor>

</spatial_layer>

<spatial_layer>

...

</spatial_layer>

</scalability_info_model2>

</sei_message>

</nal_unit>

</byte_stream_nal_unit>

<byte_stream_nal_unit>

<nal_unit>

<nal_ref_idc>3</nal_ref_idc>

<nal_unit_type>7</nal_unit_type>

<raw_byte_sequence_payload>

<seq_parameter_set_rbsp>

<profile_idc>100</profile_idc>

<seq_parameter_set_id>0</seq_parameter_set_id>

...

</seq_parameter_set_rbsp>

</raw_byte_sequence_payload>

</nal_unit>

</byte_stream_nal_unit>

<byte_stream_nal_unit>

<nal_unit>

<nal_ref_idc>3</nal_ref_idc>

<nal_unit_type>8</nal_unit_type>

<raw_byte_sequence_payload>

<pic_parameter_set_rbsp>

<pic_parameter_set_id>1</pic_parameter_set_id>

<seq_parameter_set_id>0</seq_parameter_set_id>

<entropy_coding_mode_flag>1</entropy_coding_mode_flag>

...

</pic_parameter_set_rbsp>

</raw_byte_sequence_payload>

</nal_unit>

</byte_stream_nal_unit>

<byte_stream_nal_unit>

<nal_unit>

<nal_ref_idc>3</nal_ref_idc>

<nal_unit_type>21</nal_unit_type>

<nal_unit_information_for_scalable_extension>

<temporal_level>0</temporal_level>

<dependency_id>1</dependency_id>

<quality_level>0</quality_level>

</nal_unit_information_for_scalable_extension>

<raw_byte_sequence_payload>

<slice_layer_in_scalable_extension_rbsp>

<slice_payload>2332 5009</slice_payload>

</slice_layer_in_scalable_extension_rbsp>

</raw_byte_sequence_payload>

</nal_unit>

</byte_stream_nal_unit>

SEI message

SPS

PPS

Slice Data

Fig. 4. Example of a BSD containing the necessary information to realize
the different scalability transformations.

SPS, a PPS, and an example of a NALU containing slice
data that belongs to a frame that is part of an enhancement
layer. From the SEI message, one can detect that the cor-
responding bitstream contains 2 spatial layers (a base layer
and an enhancement layer, indicated by 1), 4 temporal levels
(indicated by the 3 enhancement temporal levels), and that the
highest spatial layer contains pictures of 44 MBs by 36 MBs
(resulting in a frame resolution of 704x576 pixels). Based on
the profile idc syntax element of an SPS, the extractor
can decide to which spatial layer the SPS belongs. The same
is applied for the PPS but the reference to the SPS gives the
indication to which spatial layer the PPS belongs. Finally,
the last NALU contains the actual encoded slice data. In
this example, one can see that the NALU contains scalability
information such as the temporal, spatial, and quality level. It
is clear that the slice in this unit belongs to the second spatial
layer and to the base temporal and the base quality layer. In
case that this information is not present in the NALU, the slice
data belongs to the base spatial layer. One can also see how
the byteRange datatype is used to point to a block of data
in the original bitstream, in particular to a block that starts at
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TABLE I
PERFORMANCE MEASUREMENTS.

Bitstream BintoBSD (s) Size Transformations (s) BSDtoBin (s)
#Frames #Temp Layers #Spat Layers Size (Kb) Ref Software Modified Version BSD (Kb) Temp Spat SNR

60 4 2 558 39.4 15.3 172 0.28 0.30 0.33 0.13
64 4 3 485 112.9 41.3 302 0.43 0.42 0.41 0.20
150 5 2 2058 130.4 49.3 322 0.34 0.44 0.45 0.21
300 5 2 1489 417.3 166.9 631 0.42 0.54 0.57 0.22

byte position 2332 and that has a length of 5009 bytes.
Based on the discussed information, it is clear that it is possible
to implement a stylesheet that removes the necessary NALUs
in order to obtain a description that is linked to a bitstream
that has a lower spatial, temporal, or SNR quality.

V. EXPERIMENTAL RESULTS

In this section, we discuss the performance evaluation of the
BSDL-based adaptation framework in the context of scalable
bitstreams that are compliant with JSVM. We have measured
the processing time of the BSDL Parsers, in particular of the
BintoBSD and BSDtoBin Parser, as well as the time needed
to execute the transformations in the XML domain. We have
used two implementations of the BSDL software to obtain
the execution times. The first implementation is version 1.2.1
of the MPEG-21 BSDL reference software, while the second
implementation contains some own-developed optimizations.
Most of the execution time of the BintoBSD Parsers is spent
on the evaluation of XPath expressions. In our modified
version, the process to evaluate the XPath expressions is
implemented in a faster manner, in particular by using the
Xalan library as efficient as possible. The transformations used
remove two temporal levels, one spatial layer, or eliminate the
enhancement quality layer.
The measurements were done on a PC having an Intel Pentium
IV CPU, clocked at 2.8GHz with Hyper-Threading and having
1GB of RAM at its disposal. The bitstreams were created by
relying on the JSVM reference software version 3.
The results of our performance analysis are given in Table I.
The first columns contain the characteristics of the scalable
bitstreams used, such as the size, the number of frames,
spatial layers, and temporal levels. The execution time of the
BintoBSD Parser to obtain the BSDs is high, certainly in
comparison with the length of the bitstream and the generation
of the bitstream by the BSDtoBin tool. One can see that our
modified version of the reference software needs less time
to generate the same BSD. Using the algorithm as discussed
in [7] should lead to lower execution times, but this is not the
main topic of this paper. Further, the XSLT transformations
can be executed very fast. The kind of scalability that is
exploited does not have an impact on the execution times.

VI. CONCLUSIONS

In this paper, we have described a harmonized approach
between the use of scalable video coding and a metadata-
driven content adaptation engine. Therefore, in order to ob-
tain fully embedded scalable bitstreams, the Joint Scalable

Video Model (JSVM) was used. The latter is an emerging
video specification that is based on H.264/AVC. To extract
partial bitstreams, containing a lower spatial, temporal, or
SNR quality, we have described the high-level structure of the
generated bitstream in XML by using the MPEG-21 Bitstream
Syntax Description Language standard. For the first time, the
adaptation along a scalability axis of the original encoded
bitstream is realized by transforming the corresponding XML
description. During a performance analysis of the framework,
one can conclude that the generation of the description takes
a lot of time. However, once the description is generated, a
process that only has to be executed once, the transformation
of the description as well as the subsequent generation of
the adapted bitstream from the transformed description can be
executed very fast. Finally, we can conclude that JSVM is a
good candidate to be described in XML and that the generated
descriptions can be used in a standardized multimedia format-
agnostic content adaptation framework such as MPEG-21.
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